ファジィ制御実習

引き続き,振子が倒れないようにアームを制御する課題です。 前の実習の問題であるハンチング現象を解決します。

グラフ解析

下図は、前の実習で保存したログデータをエクセルで開いてグラフ表示したものです。

グラフのハンチング部分を見ると「振子角度」が右で「振子角速度」も右である(振 子が右に傾きさらに右に倒れようとしている)にも関わらず、制御出力はアームを 左に動かす出力が残ってしまっています。グラフの ● 部分 「振子角度」が左で「振子角速度」も左である場合も同様で、アームを右に動かす出 力が残ってしまっています。グラフの ❷ 部分 このため、ハンチングを繰り返す結果となっているようです。 ハンチングの不具合をさけるためルール No.06, 07 を追加します。

ルールの意味は「振子角度」と「振子角速度」が同じ方向の場合には同じ方向にアームを動かします。また、「振子角度」が [ZR] であっても「振子角速度」があれば「振子角速度」の方向にアームを動かします。

ルール No.01, 03 の貢献度を 1.5 に, No.02 の貢献度を 4.0 とし, No.04, 05 の後件部値をそれぞれ – 350, + 350 と大きくしています。これは, 追加したルールが影響し,追い越し出力が下がってしまうためです。

10	ファル	1	振子角度	振子角速度	アーム速度	制御	出力
ル削除	<u>チル</u> アー ル	Ĵλ No	PB- PM- ZR- NS- NM- NB-	Р.В- Р.М- Р.S- Л.R- Л.S- Л.S- Л.М-	PB- PM- NR- NS- NM- NB-	後件部値	貢献度
$\left \times \right $		01			$\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times$	-100	1.5
$\left \times \right $		02			$\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times$	0	4.0
$\left \times \right $		03			$\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times\!\!\times$	100	1.5
$\left \times \right $		04				-350	3.0
$\left[\times\right]$		05				350	3.0
×		06				-150	3.0
×		07				150	3.0

追加ルール

- ルール完成後、「制御開始」ボタンをクリックします。
 このとき、倒立振子メカの電源は OFF のままです。
- 2. 振子を手で動かしてみて、ファイアルールが意図通りになっているか確認します。

- 振子を真っ直ぐ立てて持ち、倒立振子メカの電源を ON します。
 急にアームが動く場合があるので、モータの電源はすぐに OFF できるようにしておいてください。
- 4. 手を離しても振子を安定して倒立させられるか確認してください。

アームはなぜ原点に戻る?

「ファジィ制御ソフト」には,隠れた情報として「アーム角度」が入力されています。 「アーム角度」を時間で微分したものが「アーム角速度」です。 振子を倒立させ,アーム原点でバランスさせるためには必要な情報ですが,本教材 では,「アーム位置」情報を「振子角度」としてソフトウェア上で取り込んでいます。 その内容は次の方法で確認できます。

1. 振子を取り外します。

- 2. アームを原点にセットします。
- 3. 振子が取り付けてあったボスを回し, 振子が真っ直ぐ立っていた位置まで(「青線」 が[ZR]の位置になるよう)手で調整します。
- この状態でボスは動かさないようにしてアームだけをゆっくり左右に動かします。
 この時,ボスを回していないにも関わらず「振子角度」情報が変化します。

これがどのような効果をもらたすのでしょうか。

例えば、アームが原点より右側にあるとき、振子が真っ直ぐ立っているにも関わら ず振子が右に傾いた情報が与えられるためアームは右に移動します。すると真っ直 ぐ立っていた振子は左に傾き、倒立を維持するためアームは左に移動します。 アームが原点より左側にあるときは上記の逆に作用します。結果としてアームが原 点に戻ることになるのです。

0 実行速度[ms]	12 指定速度[ms]		
制御出力 素 所 皆 後件部値 貢獻度 0 1.0	0 振子角度 AD0 0 振子角度 AD1 [R25で調節] 0 アーム角度 AD2 0 アーム角度 AD3 [R32で調節]		
	0 振子角度偏差 02 アームセンター戻弦 0 振子角度偏差 98 振子角度スパシ 0 振子角速度 52 振子角速度スパシ 0 アーム角度偏差 185 アーム角速度スパシ 0 アーム角速度 185 アーム角速度スパシ 当 アーム角速度 185 アーム角速度スパシ 出力計算値 変換係数 駆動周波波数 0 ^ 1.15 × 72 = 0 回 回 回 回 回 回 回 国 U<		
	周辺を登え上球に 100000 周辺を登え下段: 50		

パラメータ表示エリア

アームがセンターへ戻ろうとする強さは 「アームセンター戻強さ」で調節できます。 値が大きいほど「戻り」が強く,小さいほ ど弱くなります。

しかし, 値を変えすぎると制御不能の原因 になりますのでご注意ください。